Numerical Investigation into Biomass Gasification using Fluidized Bed Gasifier Engr. Ms. Hira Jaffer Dr.-Ing. M. Wasim Tahir* Department of Chemical Engineering University of Engineering & Technology Lahore, Pakistan *Presentation/Correspondence #### **Presentation Outline** #### Introduction - Renewed interest in biomass gasification! - 1. Scarcity of conventional fuels & price hikes - 2. Fluctuations in supply & environmental concerns - 3. Increased energy demand due to population explosion - ■Biomass sources are abundant e.g. animal & municipal wastes, agricultural residues - Need to develop functional & competitive technology - ■CFD modeling is effective in design and development ## Biomass gasification - Biomass gasification converts biomass into a more convenient gaseous fuel - ► Main product of gasification process is syn gas (comprising H₂, CO, CO₂, CH₄, H₂O, N₂) - Syn gas can be used in boilers, engines, and turbines ## Advantages of Fluidized Bed Gasification - Flexibility of fuel - → Wider particle size distribution of feedstock - ■Efficient HMT due to better feedstock/oxidant mixing - Higher conversion of feedstock - ► Higher efficiency (75% to over 90%) - Avoid clinker formation ### **Objectives** - Develop a 3D model of biomass gasification process that incorporates energy, flow and reaction chemistry - Find suitable kinetic parameters for the model - Implement the model into CFD simulation package (ANSYS Fluent®) - ■Investigate design aspects of the selected gasifier e.g. feed position, feed angle - Study the effect of gasifying agent on the composition of product gas - Analyze results and give further recommendations ## **Modeling Procedure** - Assumptions - Geometry - Domain discretization (meshing) - Mesh independency test - Governing Equations - Solution procedure - Results ### Assumptions - ► Steady state conditions - Adiabatic conditions - Fluids are treated as ideal gas - ►k-epsilon turbulence model is assumed - ■Inert phase is ignored - Volatile break up approach is used - → Homogeneous reaction kinetics assumed ## Geometry [1] Geometry model of the domain with different components and dimensions developed using ANSYS DESIGN MODELER® ## **Grid Independency Test** A single reaction kinetic model with simple settings is used [2] | Material | Mass Flow Rate
(kg/hr) | Composition (%) | | Temperature
(K) | |-----------------|---------------------------|---------------------|----------|--------------------| | Wood -Volatiles | 3.65 | Wood -
Volatiles | 100 | 300 | | Air | 3.88 | O2
N2 | 21
79 | 600 | wood-volatiles + 1.058 $O_2 \rightarrow CO_2 + 1.1191 H_2O$ $$-r_A = k_o e^{-E/RT} c_A^a c_B^b$$ $-r_A$ =2.119 e +11 ($EXP^{-2.027 \text{ e}+11}/_{RT}$) [wood volatile]^{0·2} [O_2]^{1·3} ## **Grid Independency Test** #### 3D Tetrahedral Mesh ## Governing Equations [3] #### 1. Mass Balance: $$\frac{\partial}{\partial x_i}(\rho u_i)=0$$ #### 2. Momentum Balance: $$\frac{\partial(\rho u_i u_j)}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} + \rho g_i + F_i$$ #### 3. Energy Balance: $$\nabla \cdot (\rho \overrightarrow{u}H) = \nabla \cdot \left(\frac{k_t}{c_P} \nabla H\right) + S_h$$ x_i, x_j = direction vector, [-] u_i, u_j = velocity vector, [ms⁻¹] p = pressure, [Pa] τ_{ij} = stress tensor, [Pa] g_i = gravitational force, [ms⁻²] F_i = mass force, [N] H = enthalpy, [Jkg⁻¹] k_t = thermal conductivity, [Wm⁻¹K⁻¹] c_P = avg. specific heat, [Jkg⁻¹K⁻¹] S_h = heat source term, [Wm⁻³] ## **Governing Equations (continued)** #### 4. Species Balance: $$\frac{\partial}{\partial x_i} \rho u_i f_1 = \frac{\partial}{\partial x_i} \left(\frac{\mu_t}{\sigma_t} \frac{\partial f_1}{\partial x_j} \right) + S_i$$ #### 5. Turbulent Kinetic Energy: $$\frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] + G_k - \rho \varepsilon$$ #### 6. Dissipation Kinetic Energy: $$\frac{\partial}{\partial x_i}(\rho \varepsilon u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + \frac{\varepsilon}{k} (C_{1\varepsilon} G_k + C_{2\varepsilon} \rho \varepsilon)$$ μ_t = turbulent viscosity, [Pa.s] σ_k = turbulent Prandtl number for k,[-] \mathbf{k} = turbulence kinetic energy, $[\text{m}^2\text{s}^{-2}]$ G_k = generation of turbulence kinetic energy, [m²s⁻²] ε = dissipation turbulence kinetic energy, [m²s⁻³] σ_{ε} = turbulent Prandtl number for ε , [-] $C_{1\varepsilon}$, $C_{2\varepsilon}$ = constant, [-] ## **Characterization of Rubber Wood** [3] | | Ultimate analysis
(wt% dry basis) | | Proximate analysis
(wt % dry basis) | | | |--|--------------------------------------|-------|--|-------|--| | | | | | | | | | C | 48.27 | Char | 18 | | | | / 0 | 45.20 | Ash | 0.8 | | | | Н | 6.36 | Volatile | 81 | | | | N 0.14 | | Moisture content (wt | 18.5 | | | | | | % wet basis) | | | | | S | 0.00 | Higher heating value | 20540 | | | | | | (kJ/kg) | | | ## **Volatile Break-up Approach** ■ Volatiles, char and ash compositions released from the rubber wood decomposition are expressed by the following general reactions. Rubber wood → Volatile + char + tar + ash Volatile $$\rightarrow x_1CO + x_2H_2 + x_3CO_2 + x_4CH_4 + x_5H_2O$$ Where x_i is the number of species moles $(\sum x_i = 1)$ - ► Volatile from the rubber wood consisting of Carbon (C), Hydrogen (H), Oxygen (O), Nitrogen (N) and Sulphur (S) - Initially converted to a pseudo gas phase species, referred to as volatile ### **Kinetic Model** | Reactions | Pre-exponential
Factor (k_o) | Activation Energy (E) (Jkmol ⁻¹) | Temperature
(Exponent) | Reference | |---|-----------------------------------|--|---------------------------|-----------| | $C + H_20 \rightarrow CO + H_2$ | 8.268 | 1.75 e +8 | 1 | [4] | | $C + CO_2 \rightarrow 2CO$ | 8.268 | 1.75e+8 | 1 | [5] | | $2C + O_2 \rightarrow 2CO$ | 147000 | 1.113 e +8 | 1 | [4] | | $CO + 0.5O_2 \rightarrow CO_2$ | 1e+15 | 1.33 e+8 | 0 | [4] | | $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ | 3.552 e+14 | 1.305 e+8 | 0 | [5] | | $2H_2 + 0.5O_2 \rightarrow 2H_2O$ | 5.159 e+15 | 2.8519 e+7 | 0 | [5] | | $\mathbf{CH_4} + \mathbf{H_2O} \rightarrow \mathbf{CO} + \mathbf{3H_2}$ | 3.18 e+8 | 1.25 e+8 | 0 | [5] | | $C + 2 H_2 \rightarrow CH_4$ | 8.889 e-6 | 6.7 e+7 | 1 | [4] | | $CO + H_2O \rightarrow CO_2 + H_2$ | 2.34 e+10 | 2.83 e+08 | 0 | [6] | | $CO_2 + H_2 \rightarrow CO + H_2O$ | 1.894 e+7 | 2.184 e+8 | 0 | [6] | # **Boundary Conditions** [3] | | | Material | Mass Flow Rate
(kg/hr) | Compos
(%) | | Temperature
(K) | |---|------------|----------|---------------------------|---------------|-------|--------------------| | | Fuel inlet | Rubber | 3.65 | Carbon | 48.27 | 300 | | / | | Wood | | Oxygen | 45.2 | _ | | | | | | Hydrogen | 6.36 | | | | | | | Nitrogen | 0.14 | | | | Air inlet | Air | 3.88 | Oxygen | 21 | 600 | | | | | | Nitrogen | 79 | | # **Simulation Setup** | Solver | Pressure-based | |----------------------------|--| | Models | K-epsilon, Energy, Species Transport (Volumetric reactions,)eddy dissipation concept | | Materials | Rubber Wood (Mixture of carbon, hydrogen, oxygen, nitrogen) | | | Air composition: $(0.21 O_2, 0.79 N_2)$
Mass flow rate = 3.88 kg/h | | oundary Conditions | Rubber wood composition (0.4827 C, 0.452 O_2 , 0.0636 H_2 , 0.0014 N_2) Mass flow rate = 3.65kg/h | | Pressure Velocity Coupling | Phase-Coupled | # Results # **Model Comparison** #### Effect of Vertical Position & Angle of Fuel inlet - ► Vertical position of fuel inlet is varied as follows: - 1. 100mm - 2. 150mm - 3. 200mm - 4. 250mm - 5. 300mm - ► Feed angle of fuel inlet w.r.t. z-axis is varied as follows: - 1. 0° - 2. 30° - 3. 60° #### **Vertical Feed Position** → **Mole Fraction of CO and H**₂ #### **Vertical Feed Position → Mole Fraction of CO** ## **Vertical Feed Position** → **Mole Fraction of H**₂ Contours of H₂ mole fraction #### **Vertical Feed Position → Product Gas Composition** #### Feed Angle \rightarrow Mole Fraction of CO and H_2 #### **Feed Angle** → **Mole Fraction of CO** ## Feed Angle \rightarrow Mole Fraction of H_2 #### **Feed Angle Product Gas Composition** #### Outlet gas composition ## **Effect of Gasifying Agent** Following compositions of different gasifying agents are simulated - 1. $0.2\% O_2 : 0.8\% H_2 O$ - 2. $0.5\% O_2 : 0.5\% H_2 O$ - 3. $0.8\% O_2: 0.2\% H_2O$ - 4. Oxygen Enriched Air $(0.5\% O_2)$ - 5. Air $(0.21\% O_2)$ #### **Gasifying Agent Mole Fraction of CO** #### **Gasifying Agent Mole Fraction of CO** #### Contours of CO mole fraction (0.5% O2) #### Gasifying Agent \rightarrow Mole Fraction of H_2 #### Mole fraction of H₂ along gasifier length ## Gasifying Agent \rightarrow Mole Fraction of H_2 #### **Gasifying Agent Product Gas Composition** #### Gasifying Agent \rightarrow Mole Fraction of CO_2 Contours of CO₂ mole fraction ### Gasifying Agent → Syn Gas Ratio (H₂:CO) #### **Conclusion** - ► Vertical positions of feed inlet at 200 mm and 250 mm gives rise to better quality syn gas in terms of CO and H₂ fraction - ► Feed angle is found to have negligible impact on outlet gas composition. - Increasing O2 in gasifying agent, CO2 in product stream increases thereby decreasing CO. - Increasing O2 also increases water content in product gas that negatively impacts the quality of syngas - Gasifying agent comprising a mixture of 20% Oxygen and 80% steam gives rise to highest syn gas ratio compared to the rest #### **Outlook** - To incorporate heterogeneous reaction kinetics in the model - To include inert (solid) phase in the model - To further improve and refine the mesh #### **Recommendations:** Results obtained gave a good insight into the fluidized bed gasification process. The model can serve as a basis to further investigate different aspects of the fluidized bed gasification process. # THANK YOU #### References - 1. Radmanesh, Ramin, Jamal Chaouki, and Christophe Guy. "Biomass gasification in a bubbling fluidized bed reactor: experiments and modeling." *AIChE Journal* 52.12 (2006): 4258-4272. - 2. Ansys Fluent® Model Library, ANSYS Academic v2020R2. - 3. Kumar, Umesh, Ahmed M. Salem, and Manosh C. Paul. "Investigating the thermochemical conversion of biomass in a downdraft gasifier with a volatile break-up approach." *Energy Procedia* 142 (2017): 822-828. - 4. J. Xie, W. Zhong, B. Jin, Y. Shao and H. Liu, "Simulation on gasification of forestry residues in fluidized beds by Eulerian-Lagrangian approach," Bioresource Technology, vol. 121, pp. 36-46, 2012. - 5. A. Gomez-Barea and B. Leckner, "Modeling of biomass gasification in fluidized bed," Progress in Energy and Combustion Science, vol. 36, pp. 444-509, 2010 - 6. P. Nakod, "Modeling and validation of oxy-fired and air-fired entrained flow gasifiers," International journal of Chemical and Physical Science, vol. 2, no. 6, pp. 2074-2091, 2013. - 7. Ephraim A, Pozzobon V, Louisnard O, Minh DP, Nzihou A, Sharrock P. Simulation of biomass char gasification in a downdraft reactor for syngas production. *AIChE J*. 2016;62(4):1079-1091.